

Important Formulae

: $\mathrm{F}=\mathrm{m} \times \mathrm{a}$
\star Linear Momentum

$$
: p=m \times v
$$

$: \tau=\mathrm{F} \times \mathrm{d}$
\star Change in momentum :

$$
\Delta p=P_{f}-P_{i}=m v-m u
$$

\star Momentum of a couple

$$
: M=F \times S
$$

* Impulse
$: \mathrm{J}=\mathrm{F} \times \mathrm{t}=\Delta p$
\star Gravitational Force
$: \mathrm{F}=\frac{G m_{1} m_{2}}{r^{2}}$
\star Acceleration due to gravity : $\mathrm{g}=\frac{G M}{R^{2}}$
\star Weight
: $\mathrm{W}=\mathrm{m} \times \mathrm{g}$
* Kinetic Energy

Important Values to remember

\star Acceleration due to gravity

on the surface of the Earth $=9.8 \mathrm{~ms}^{-2}$
on the surface of the Moon $=1.625 \mathrm{~ms}^{-2}$
\star Radius of Earth $(\mathrm{R})=6378 \mathrm{~km} \cong 6400 \mathrm{~km}$
\star Mass of Earth (M) $=5.972 \times 10^{24} \mathrm{~kg}$
\star Gravitational constant $(\mathrm{G})=6.674 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ |
$\star 1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}=10^{5}$ dyne
$\star 1 \mathrm{~kg} \mathrm{f}=9.8 \mathrm{~N}=98 \times 10^{4}$ dyne
$\star 1 \mathrm{gf}=9.8 \times 10^{-3} \mathrm{~N}=980$ dyne

Important Principle

At equilibrium, the algebraic sum of the moments of all the individual forces about any ! point is equal to zero.

